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Discerning aggregation in homogeneous ensembles: A general description of photon counting
spectroscopy in diffusing systems
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In order to discern aggregation in solution, we present a quantum mechanical analog of the photon statistics
from fluorescent molecules diffusing through a focused beam. A generating functional is developed to fully
describe the experimental physical system as well as the statistics. Histograms of the measured time delay
between photon counts are fit by an analytical solution describing the static as well as diffusing regimes. To
determine empirical fitting parameters, fluorescence correlation spectroscopy is used in parallel to the photon
counting. For expedient analysis, we find that the distribution’s deviation from a single Poisson shows a
difference between two single fluor monomers or a double fluor aggregate of the same total intensities. Initial
studies were performed on fixed-state aggregates limited to dimerization. However preliminary results on
reactive species suggest that the method can be used to characterize any aggregating system.
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[. INTRODUCTION ences in a species’ fluorescence complemented by differ-
g£nces in diffusive behavior. The time delay histogram is con-

Aggregation and cooperative binding are fundamental t ) . .
goreg P 9 structed of the time between successive photon caiids

biological function and regulation, but difficult to observe at . . . . .
the few molecule level. Recent advances in few molecul )- Unlike counting the number of events per time bin, this

solution spectroscopy have been achieved by combining th pe of coupting allows us to extract additionall information

comparatively large signals of fluorescence with recent tech"ZIbOUt the diffusion. Conceptually, as more fluorinated mono-

nological advances in photon countigg.g., low noise de- mers_aggregate, the_ flgorophores sample the detection YOl'
y ume in bunches. This increases the chance of a large time

tectory. One powerful technique, fluorescence correlation i | bet i . - hot d th
spectroscopy(FCS, has enabled researchers to observ nterval between two SUCCESSIVE emission photons an €
arge At tail of the time delay histogram has an increased

many small ensemble processes such as diffuglpnmo-
frequency.

lecular conformational dynamic2], and reaction kinetics T tract the inf i the structural ch
[3]. In FCS, fluctuations in fluorescence intensity are tempoh odex r?c de n ormat_lon fon i N SI rtuc ura c(j:.ﬁanget, vtve
rally correlated to reveal the time scale of the underlying ave developed a generating functional to unify different sta-

fluctuation source. In the simplest case, this could be tthtical aspects of the_ photon_ time series. Thi_s fu_nctional is
diffusion time scale of a fluorescent molecule through a sam[mdel(:“ol as a transition matrix e!emer_lt of a f'Ct't'.OUS guan-
pling volume. However, it is difficult to discern aggregation tum mechanical SYSte'.“ evolylng In an imaginary Flme. Many
based on the diffusion time alone since the increase in diffu\-Ne" develop.ed techn!ques In quantum mechanics are bor-
sion time between a monomer and a dimer is weakly deper{-owed to derive analytical expressions for other gxpenmental
dent on the increase in effective radigs(rdY2 for hard observables such as the autocorrelation function. Our ap-
spheres [4]. proach is complementary to the description model proposed

.by Novikov and Boeng7] for the photon counting histo-

An alternative approach to FCS is the statistical anaIyS|sgram An extension of our functional can also be applied to
of the time series of emitted photofrsumber counting Fig. y . ! ) y
1), since the number distribution of fluorophores in the de_modem multi channel techniqués, 9] as well as the incor

tection volume at any given moment is different for species  Time Delay between Photons

of different quantum vyield or fluorophore number. This Ay, A Mg e
analysis, called photon number counting histogram analysis

[5,6], was originally developed to detect the “brightness” per N 1= >
particle, but relied on the stati;mondiffusing limit. How-

ever in experiment, several factors potentially overshadow Number of Photons in a Bin
the specific brightness signature of a fluor, such as triplet ! N ' N ' L
states, bleaching, or quenching. We propose a method of k 2

analysis, thetime delay histogramto discern small differ- ' >
Integration Time, T

FIG. 1. Schematic of a photon counting trace. Traditional pho-

*Present address: Laboratory of Immunology, National Instituteton counting divides the total integration time into bins, counting

of Allergies and Infectious Diseases, National Institute of Health,the number that fall into each. We propose a different type of count-
Bethesda, MD 20892. ing based on the time delay between two successive photon counts.
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poration of secondary processes such as triplet states, bleach- 1 T-r
ing, quenching, and chemical reaction kinetics. Alr) = I‘z{}f dtii(t+7) - |2} -odt) (2.3
Recently Kask and co-workers also proposed a method to 0
extract the diffusion signature of a particle through fluoresfor T> r, which decays with a characteristic time scajg
cence intensity multiple distribution analysiSIMDA) [9].  the diffusion time through the collection volume. The sub-
In FIMDA, many histograms are constructed from the sameraction of 5. permitsA(t) to vanish for allr for a Poissonian
time trace as the bin size is varied. In contrast, the time delajiistogram. Dividing the integration time intbl, bins of
histogram we propose, contains the diffusion signature of thequal time intervalr, i.e., T=N,7, the number of photon
aggregate in aingle histogram. At small time delay8ess  counts falling within the time bins aney,,m,, ...,my, and
than the diffusion time through the collection volumwee are  their moments °
sensitive to the rate of photons emitted per object, and at

greater delays, diffusion dominates the statistics. Finally, we 1 No |
offer a complementary technique to FIMDA using the Man- M, = N_bzl m, (2.9
n=

del Q parametef12] to expediently extract diffusion infor-
mation from number counting distributions. The power ofcarry the structural information of the underlying fluores-
this technique could be increased by greater photon colleGence molecules. The quantity for comparison, called the
tion capabilities, leading to better statistics and ultimatelyMandel'sQ parameter, is defined as
better discrimination, including higher moments, in the large )
delay limit. 5 M- Mi-M; 2.5

To demonstrate the sensitivity of our analysis, we choose My ' '
a case where the difference in diffusion times is negligible. A , ) )
particularly difficult case is the discrimination of two mono- Where the first moment is defined B, =17, etc. Although
mers of identical fluorescence from a single dimer with thei9ner moments yield greater differentiation, we limit our

sum of their fluorescence. Although both have the same a@nalysis to the second moment due to the experimental col
lection capabilitieg<2'° photons of our system. The defi-

erage rate of emitted photons, they sample the excitatiolY _ o )

beam profile differently as they diffusénhomogeneous in- MNition (2.3 and the relatiomm,= [, dti(t) directly relates
tensity profile of a focused beamFor the experiment, a the Q parameter to the autocorrelation function,
sequence of single-stranded DNA is specifically tagged with ol (7

either one or two fluorophores per strand. The single-dyed 5= —f ds(7-9)A(S). (2.6)
strands will be considered “monomers” and the doubled TJ0

t?‘gged as “dimers.” For all cases, we find good d'.scnmma'Similar relations exist between higher order correlation func-
tion between samples of a given concentration of dimers ver:

sus that of twice the concentration of monomers, where botﬁions and higher order binning moments,
' Finally we describe the time delay histogram of the dis-
samples have the same average fluorescence.

tribution of time intervals between two successive photon
events, i.e. Aty,At,,... . For sufficiently large number of
II. OVERVIEW OF APPROACH photon counts, a distribution function aft, p(At), can be
extracted, which has not been discussed in the literature. The
The time series of photon events may be described by ththeory of this function will be developed in Secs. IV and V

instantaneous fluorescence intensity will be compared with experimental result in Sec. VI.
N Il. EXPERIMENTAL MATERIALS AND METHODS
1) =2 ot —ty), (2.0 o
n To create well-defined single or double fluor elements,

short pieces of single-stranded DN#sDNA) were used as
wherety,t,, ... t,, ... ty correspond to the tick marks of Fig. substrates. Either one or two fluorophores can be site-
1 with N total number of photons counted aeds the de-  specifically coupled to each DNA oligomé&R9 bases in
tector resolution.s(t—t,)=1/e for |t—t,|<e and 5(t-t,  length, dependent on the number of end-strand modifica-
=0 otherwise. In the theoretical analysis of the subsequerftons(primary amino linker arms, Midland Certified Reagent
sections, we shall take the limi&— 0 so the instantaneous C0.. Succidinmyl ester Rhodamine 6@nolecular probes
intensity becomes a random spike function. In the currenyv@s coupled to the modified sites in the presence of DMF,
literature statistical analysis tends to be limited to the avernd purified by gel filtration and reverse phases chromatog-

age intensity, raphy[high performance liquid chromatograplisPLC)].
The experimental setuig. 2) is an inverted confocal
T microscopy arrangement. The sample is illuminated by the
| = —f dtl(t), (2.20  514.5 nm line of a Ar+ lasef(Lexel 85 focused through a
0 60X water immersion objectivénumerical aperture 1.2,

Olympus. Incident power was empirically optimized at
and various types of correlation functions, the most familiarl00 W, so that the photon counts per object were at least
being the autocorrelation function 50 000 cps, while avoiding significant population of the trip-
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here we would like to provide a unified approach, which ties
% the experimental observables such as fluorescence intensity,
/ . autocorrelation, the binning moments, and time delay histo-
L * 200upL Sample gram to a probability generating functional.

OBJ - A. General formulation

___ Aol - T @ To begin, we divide the integration tiniE into A/ bins,
DM __ _(}::’r::\ﬂ (>———%1  each of intervale, i.e., T=Ne. Each fluorescence diffusion
NF PH Counting ] process prodl_Jces a histogram of photon coqntllng,
APD co {my, ...,m3}, with m; the number of photon events within
thelth time bin and the corresponding fluorescence intensity
FIG. 2. Schematic of the photon counting setup. OBJgiven by
=objective, DM=dichroic mirror, NF=notch filter, PH
=pinhole, APD=avalanche photodiode, CB=counting board, CO =M 4.2)
=correlator board. = e '

let state or bleaching. Emitted photons are collected througpet Prm,..m, Stand for the probability of this particular time

the same objective, directed through a high-pass dichroige |,y histogram. The generating function of this set of prob-
mirror (Omega Opticgland a notch filtetKaiser Optical to 4 pyilities is defined as

reduce collection of on-axis elastically scattered photons.

The collection vplume is f_urt_her_refined by focusing the light Gz ... 2)= > PpmZMeZ™W, (4.2
onto a 25um pinhole, eliminating off angle scattering as My

well as spatially defining the collection volume. The collec- = . )

tion volume was empirically determined through the number\{Vh!Ch is properly .normallzed, |.e.g(1, - ,D=1. In the
of molecules measured through FCS as a function of increadimit e—0 (or, equivalently\/— with a fixedT), the se-
ing concentration. All FCS measurements were 10 min irfluencesz, ... ,zy} and{ly, ... I \} become two functions of

duration using a ALV 5000 E board for data collection andt, z(t) andl(t), such thatz(le)=z andl(le)=I,. In particular,
in-house data analysis software for fitting. The overall detecase— 0, mostm's vanish, few of them are equal to one, and
tion efficiency of the setup is 3 %. Photons are detected by the probability ofm>2 becomes negligible. The function
counting avalanche photodiodEG&G/Perkin EImey, pulse (1) approaches the random spike function introduced in the
width 25 ns, whose signal is processed by task specifitast section. In the same limit, the generating funciiér®)
counting board(NI-TIO 6602 National Instrumenfscon- becomes a generating functional

trolled by LabVIEW. The period between each photon is )

measured by counting the number of external clethHz) glz(v)] :/\I}ng(zb c 2N (4.3
pulsegsource between each photon pulggate. 26 photons

are collected for each trial. Data acquisition technology lim-An important set of observables are various correlation func-
ited the total collection time to 1-2 s, depending on the in-tions given by the functional derivatives gfwith respect to
cident intensity. After pulsing artifacts from the photodiodesz(t) at z(t)=1, i.e.,

were measured-100 ns, with comparison to cross correla- 5 5
tion of the same signal in two perpendicular detectors. Digi- _

tal filtering was used to subtract the after pulsing noise from Calty, - o) = 52(ty) az(tn)In A2O]zp=1 (4.4
the final histogram statistics. DNA concentrations are

Nnanomo|ars in PBS buffer SUCh that on|y one monomeﬂ—he funCtiOﬂCl(t) iS nothing but the ensemble aVerage Of

molecule at any time is within the collection volume. the instantaneous fluorescence intensity at the motent
Photon counting data are collected as fluorescent particles () =C 4
diffuse through the sample volume. When the particles are (1) =Cy(0), (4.5

outside the volume they are dark and undetectable. As theye coefficienC,(t, ,t,) is related to the autocorrelation func-
enter the volume they are excited with a certain probability;jyp, betweert, andt, via

and emit a temporal pattern of photons that are detected by a
counter. Given a long integration time, many particles diffuse Cy(ty,ty)
through the volume producing temporal fluctuations in fluo- Alty,tp) = ' (4.6)
- - Ci(t)Cy(tp)
rescence. Whereas the autocorrelation function reveals the
time scale of these fluorescence fluctuations, the probabilitand the coefficient€,(ty, ... ,t,)'s for n greater than or equal

distribution characterizes their amplitude. to 3 represent higher order correlations. For the observation
timesty, ...ty sufficiently away from the beginning of the
IV. A MATHEMATICAL THEORY OF TIME integration time so that transient process may be ignored,

DELAY HISTOGRAM these functions depend only on time differences. In particu-
While there exist many papers in the literature on thelar, C(t) becomes a constant ai@it,,t,) depends only on
mathematical properties of the photon event histogiays, 7=t,—t;. In this way, we can reconcile the experimentally
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defined fluorescence intensity and the autocorrelations of theollisions which maintain the equilibrium(ii) photon emis-

preceding section. sions are statistically independent; ajiid) the photon emis-
The distribution function of the time intervalt between sion frequency per fluorophore within the detection volume
two successive photon eventgAt), referred to asit distri-  is A\qu(r). u(r) will be referred to as the fluorescence profile
bution, can also be extracted by the probability generatindunction and is normalized by the conditiarfO) = u,,,(F)
functional =1. Under these assumptions, the probability generating
T s s functional takes the same mathematical expression of the
p(At) = consf d7 transition matrix element of a quantum mechanical system of
T Jo = 6z(r) oz(7+At) N noninteracting bosons in an external potential field and
imaginary time, i.e.,
XG[Z(0)]|ty=1-0(t-r o~ 1) (4.7 ginaty
. N T
where_ o(t)=1 fqr t<0 and 0(t)=(_)_otherW|se, and the con- Glz(t)] = (l) Tex _f dtH(t) (412
stant is determined by the condition Q 0
T . . .
_ where 7 enforces the time ordering arfd is the volume of
JO dAtp(AD = 1. 4.8 the solution and will be sent to infinity for all practical pur-

) ) o poses. The Hamiltonian operator of the analog quantum me-
We refer the reader to Appendix A for its derivation. For achanical system reads

Poissonian histogram, E¢t.7) implies p(At)= et as ex-
pected. N
What is relevant to the actual observation is the detected H(®) = > h(7;, 1) (4.13
photons rather than the total number of emitted ones. Let =1
Pﬁqfi__.,mM denoted the probability of a particular histogram

{mlv, ...,m} of detected photons. The corresponding gener-
ating function reads h(f,t) = - DV2+[1 - z(t) ]\u(P), (4.14

Gerl21, - 20 = 2 Pﬁqfimz--~mNZml"'ZmN- (4.9 whereD is the diffusion constant and=kx, with k the
MMy effective number of fluorophores per molecule. The full deri-
As is shown in Appendix A, under the assumption that allvation of Eqs(4.12—(4.14) is presented in Appendix B. The
photon counts are statistically independent, we find a simpl#vave function of the stat¢ of the analog quantum mechani-

relation cal system is normalized to
Geii(z1, .. Z\) =G(L =+ mzy, ..., 1 =n+ nZy), (Fr .. Fah=1. (4.15
4.10
( ) We notice the following.
with 7 the efficiency of the detector. In the limN — o, it The Hamiltonian operata#.14) describes the motion of
becomes a particle of masg2D)™! moving in an external potential

[1-z(t)]au(r). Two kinds of expansions can be developed

for the statistical analysis. The first is a perturbative expan-

sion according to the powers of Z(t), which generates the

correlation functions to all orders. The second is the expan-

sion according to the powers of the diffusion constnt
The formulation we have established thus far is com-which is particularly useful for FCS with biological mol-

pletely general, and independent of details of the fluoresecules. The leading order of the second expansion corre-

cence diffusion process. We shall now include the details oponds to the frozen limit in the literatufg,6] and we are

the physical process and model the generating functionalble to add the higher order corrections systematically fol-

glz(t)]. ConsideN molecules, each having a specific bright- lowing this quantum mechanical analog.

ness, and diffusing in a solution of total volunfe Both It follows from Egs.(4.11) and(4.14) that the generating

Q) —x andN—x, at a fixed concentratioo=N/Q. An axi-  functional responsible for the observed time delay histogram,

ally symmetric intensity profile is created by focusing the G.4{z(t)], assumes the identical mathematical form as

laser beam within the sample solution. While fluorescencej[z(t)], provided\ is replaced by\.z=»\. In what follows,

occurs everywhere along the beam volume, the pinhole efve shall refer exclusively taj.[z(t)] with the subscript

fectively eliminates the collection of photons emitted far«eff’ suppressed.

away from the focal pointl0] and a small detection volume The generating functional4.12 can be factorized for

is defined, which contains few molecules in average at alkach aggregate, i.e.,

times. In the absence of chemical reactio® self-

hybridizatior), sufficiently weak laser intensity, and suffi- Glz(t)]=g[z(t)], (4.16

ciently low concentrations, we may assume tatN mol-

ecules do not interact with each othéxcept minimal with

Gerl2(D]=G[1 = n+ 7z(V)]. (4.11)

B. A quantum mechanical analog
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.
9[2(t)]=%< Texpl— fo dth(F,t)]

and(r|)=1. Alternatively,g[z(t)] can be calculated by inte- A. Fluorescence intensity, correlation functions,
grating the wave functioni(r,t) that solves the Schrodinger and the binning statistics
equation with an imaginary time,

cal details of the derivation are deferred to Appendix C.

> 417 the general formulation of the preceding section. The techni-

In accordance with Eq$4.4) and(4.5), the ensemble av-

J . . R erage of the fluorescence intensity reads
ﬂlﬁ(r,t) =-h(r,t)y(r,t) (4.18
- 32, —
subject to the initial conditiony(,0)=1/Q, i.e., . f d*u(f) =nx, 5.9
_ . e . .
0]= | o T). 4.19 Where n=cv with vffd ru(F)..The mtegrathnv can be
9Lz f YT 4.19 viewed as the effective collection volume defined by the fo-

cused beam and pinhole andthe average number of mol-

To take the limit of() —c andN— at a fixed concentra- ecules within the volume. The experiments reported in this

tion c, it is crucial to notice that the differenagz(t)]-1 is paper are characterized by-1,

0O(1/Q) for a small collection volume of few molecules in A . L .
! R No pplying the definition(4.4) and the quantum mechanical
average. Using the standard limit, im..(1+x/N)"=€', we  3n4106(4.12~(4.14) of G[z(t)], the second-order correlation

obtain that Cy(ty,t,) takes the form
Glz(t)] = 7120, (4.20 o5
_ P 2 _jt,-t,JDp?
W|th Cz(tl,tz) - C)\Zf Wuiie |t1 tz‘Dp y (52)
T
Hzt)]=c{ |1 —TeXD{—f dth(ﬁt)] ’ . (4.21)  with us=Jd*e P u(f) the Fourier transformation of the pro-
0 file function u(r). Substituting Egs(5.1) and(5.2) into Eq.

(4.6) for the autocorrelation function, we find the following.
For an arbitraryu(r), the autocorrelation function at zero

C. Generalization to multispecies and multichannels time lag takes a simple form

We generalize the present formulation to include several
species of fluorescent molecules with multiple channels of A(0) =H' (5.3
detection. Assuming there ah@ species each labeled by an
index | and K detecting channels each labeled by the  wjth Z the geometrical factor given by
Hamiltonian of the analog quantum mechanical system,

(4.13), becomes f i
H(t)=§§h|(rit), (4.22) Z=—. (5.4)
== f d¥u(r)

with ) ]
For nonzero time lag, we shall parametrize the autocorrela-

K tion function as
h(F,)==-DV2+ 2 [1-7,0N. (),  (4.23
a=1

Z
: : " . A7) =—Al(7), (5.9
where \, () the profile function specific to thih species n

and ath channel. The generating functiondl12) factorizes )
into a product of a single species, where each now depend&'th A(0)=1. , , ) i
on several arbitrary functiors,(t). The power series expan- For a three-dimensional Gaussian fluorescence profile,
sion according td1-z,(t)]'s yields all the corresponding
correlation functions. Unlike number counting in the frozen
limit, it can be factorized into individual detecting channels
for nonzero diffusion constants.

U(I?) — e—(x2+y2)/2wi—22/2wﬁ’ (5.6)
we obtain thaZ=1/22 and[1]

1
A(7) = , (5.7

V. ANALYTICAL EXPRESSIONS FOR DATA ANALYSIS (1 + l) \/1 + T
T j|

In this section, we shall display the analytical expressions
for fluorescence intensity, the autocorrelation function, Manwith 7, =w? /D and 7,=w{/D. For a Gaussian-Lorentzian
del's Q parameter, and thAt distribution, as derived from profile,
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o (2202 the form ofz(t) such that it equals to a constanwithin the
p— - w . . .
u(n = 2, zze YL, (5.8 time bin and vanishes elsewhere. We then have

)
— a~hF(71-2)
we find thatz=1 and G(9) =", (5.14

5 with
Al =— \/Eef”erfc( ﬂ), (5.9
g

Ty

F(d40) = §<I1 —e ) (5.19
with and

h(¢) = -DV?+ Owu(r). (5.16

While an analytical expression fd#(7|{) does not exist in

general, the expansion according to diffusion constant can be
For 7<7 and 7, <7, both Egs.(5.7) and (5.9 can be ap- piained easily,

proximated by

erfo(z) = f dxe* = g{l - é + O(z“‘)] . (5.10

1 1
1 F(740) = INrf(OT) - N2 (N +o< )
A=t 5.1 (A0 = Drf(@n) = IV (0 + 0| 7
1+ . (5.17
1
. . . - ¥vith
Extending the same analysis to the third-order coefficient o
the expansion of I according to the power aof(t)-1, we 1 nl
find the third-order correlation function for, <7, i.e., = 3mJo dé In’ zge “ (5.18
Calty by ts) = Z , (5.1  Where the leading term corresponds to the frozen limit in
1+ +i 1 Ref. [11] and the second term improves the approximation
7 T, further.

where the constar?’ is another geometrical factor, such as

Z for the autocorrelationr=t,—t,, 7 =t,—t; with t,, t,, and

t. a permutation ofy, t,, andt; such thatt,>t,>t.. Carrying out the functional derivatives in the formulas
Using Eq.(2.6), we obtain the expression of ti@param-  (4.7) with the aid of Eqs(4.16) and (4.17), the distribution

eter which agrees with that of FIMDRL1]. For r<r it can  function p(At) becomes

B. The time delay histogram

be approximated by 1
p(At) ==— —NF(At|1)
+ +
5= 2z>\q( AN P 1) , (5.13 AndAt
T T )\[ PF ( JF ﬂ
= - +n
with the dependence on different models of longitudinal pro- d (NAL)? d (NA1)
file absorbed in the constart « e NFALD) (5.19

The distribution of photon counting numbers within a
time bin can be extracted from the generating functm),  Using expansion(5.17), we derive an approximate expres-
obtained from the generating functiond{z) by restricting  sion of p(At) which is valid forAr, >1 andAt< 7,

In p(At) =In p(0) — nxf(x) + In{[f(x) +xf' (x)]? - %[Zf’(x) + xf”(x)]}

2xF () + 2x2F"(X) + %xa’f”’(x) - 2nx[ f(x) + xf’(x)]{f’(x) - %xf”(x)}

19 1 4,
i —énx3f (x) + (5.20

T

= 2f"(x) = xf"(x) + n[f(x) + xf"(x)]? ’
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tion volume (see Methods at 100uW incident power
(0.35 umq). The second sample contained the same sequence
i ] ssDNA, however, tagged with two fluorophores per object
104 NN\ 4 (one at each endThis sample was then diluted so that the
R ] average intensity in time of the two samples werpial If
‘ ] the dimer system was exactly twice the fluorescence of the

10° £ E monomer, then the dimer concentration should be 0.5 that of

i ] the monomer for the same given intensity. However, due to
102 | ‘ o A local quenching effects of the fluorophore, the average con-

é Ll centration of double-dyed molecules in the beam at any time
F (I was calculated to be 0.7 to maintain the same intensity. The
10 L r\ LWMB empirical volume of the beam was calibrated from a serial

108 N

frequency

dilution of a standard dye solution, and the rate of emitted
photons per fluorh, measured: W=1/60kHz. Concentra-
tions of single/double fluorescent aggregates in the beam
were 1 and 0.7 molecules, respectively.

FIG. 3. The time delay histograms for singldack) and double Empirical measurements demonstrated the quenching
(gray) labeled ssDNA. The resulting distributions from a single could be minimized by hybridization of the ssDNA to a non-
Poisson processes are shown by the straight lines for comparisorfluorescent target. Hybridization of such a short segnitest
low the persistent length of dsDNAorces the two fluoro-

with x=\At. Alternatively, a Taylor expansion d% in NAt ~ Phores farther apart, minimizing dye-dye interaction.
yields an expression gf(At) for NAt<1. However, double-dyed molecules never demonstrated a full

For Taylor expansion of the functiofi according to the factor of 2 increase in fluorescence over their single-dyed
power of At, we obtain counterparts. We suspect local quenching interaction of the
fluor with the nearby base of the target strand.
In p(At) =In p(0) — (n+ YAAL+ 3(B— Y)N?AL2 + O(AL), The characteristic diffusion time through the sampling
(5.21) volume was extracted from the decay of the autocorrelation
function. Due to the resolution of our correlator software
where (108s-102s), we are most sensitive to the diffusion
_3/2 across the short axis of the beam profile. Hence, the charac-
teristic time extracted from time correlation of the data is
ATy most representative af . Through FCS measurements, we
27324 find that 7, =300 us for both single-dyed molecules and
double-dyed molecules. Using a random walk simulation and
and a geometrical approximation for the long axis of the beam
1 /3 profile, we estimate; to be 100G, .
B=(27%%+ n)_l{é + <§ +2- 33/2)” + 27352 In all theoretical curves of the figures below, we use
=60 kHz for specific brightness of the single-dyed molecules
LA 3524 2‘1’2n} and an enhancement of 1/6<7.4 for the double-dyed mol-

0 50 100 150 200 250
At [ps]

3—3/2+ 2—1/2n +

(5.22 ecules. The transverse diffusion time =300 us is substi-
tuted into the theoretical formula for both single-dyed and
If the histogram were a Poissonian, a single exponentiafiouble-dyed molecules.
would be expected, which correspondsfis y=0. The pa- At first glance, the two distributions of Fig. 3 are com-
rametersg and y represent the deviation from a Poissonianpletely indistinguishable. However upon closer examination
which do not vanish even in the frozen limit, i.e.,—% and it is possible to see the two curves slowly diverge at lakge
T — . with the double-dye data falls slightly above the single-dye
data. The comparison between the analytical expression of
the time delay histograms with large and sm&llapproxi-
mations(5.20) and(5.21) is shown in Fig. 4, where the ratio
Photon counting data were collected for two systems, andf the experimental histogram to the theoretical one is plot-
the time delay histogram constructed for eg€ly. 3). Both  ted versus the time delajt. It is evident that the formula
samples consist of very diluténanomolay identical se- (5.19 together with the approximatiotb.17), denoted as
quences of ssDNA in buffer, and observations were made gl.,n(At) in the figures, is robust for singl¢a) and double-
room temperatur¢25 °C). We consider these systems non- dyed(c) samples(b) and(d) are exploded views of the small
interacting. In the first sample, specifically single end-labeled\t domain of each histogram. The curve labeled by “linear”
ssDNA was diluted to an average concentration of 1 mol-or “quadratic” corresponds to the theoretical form(Ba21)
ecule per collection beam volume at any time. The numbewith terms beyond linear or quadratic truncated. The quality
of molecules was calculated from calibration of the collec-of the agreement is improved from the linear truncation to

AT,

VI. RESULTS
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FIG. 4. (a) large At single fluor,(b) small At single fluor,(c) large At double fluor, andd) and smallAt double fluor.(Solid) Poisson,
(short dashlinear, and(long dash quadratic fits are shown for comparison in the short time limits.

the quadratic truncation. The curve labeled by “Poisson” corhistogram is representative of the number count distribution
responds 0 pyeofAt) given by a Poissonian, i.e., using a certain binning window size. For every change in
IN prheof At) =IN preof0) —AAL, which is clearly a poor de- b|_nn|ng WlndOW size, a newlhlstogram_ls constructed. Like-
Scription of the experimenta| histogram_ wise, every h|StOgram has its own unique set of moments.

Although these simulations successfully differentiate the/ll first moments should be equal to the product of the av-

two systems, the analysis is somewhat cumbersome. A con'@9¢€ intensity and the window _size will not show any dif-
mon mathematical technique to highlight the subtle differ-'€rénce between the two syste(sigle dye and double dye

ences in distributions is moment analysis. Similar techniqueﬁlea%(rzsotrdzr;ger\;‘”tﬁ g]leth(:‘i\;(pseer:)rt?gr?tasltg:(t)iﬁed\yviiﬁ] Ciﬁzcggggn'g
have proven useful in fluctuation spectroscép$—15. The paragrap X 9

first moment is the mean. the second moment the standargomem‘ the difference between the two systems emerges. In
I ) ' g. 5, we plot the second moment normalized according to
deviation, the third the skewness, etc.

) . . Eq. (2.5) for both system and the corresponding theoretical
Returning to Fig. 3, we note a profound difference be-c\, e given by Eq(5.13. The data for the two systems are

tween the experimental data and a single Poissonian procesgearly distinguishable and agree well with the theoretical
The straight lines represent two hypothetical single Poissiopagiction.

systems with different time scales. For the simple detection | the photon histogram were a single Poissonian, all cor-
of emitted photons within a fixed volume one might expectre|ations as well as th® parameter would vanish. Therefore
the statistics to resemble a single Poissonian profESls  the correlation functions and th@ parameter measure the
However, when the particles are allowed to diffuse throughdeviation of the photon histogram from a Poissonian. Recall
the boundaries of the volume, an additional Poissonian prothat the time delay histogram is essentially the result of two
cess contributes to the overall photon statisfitg,18. Not  Poissonian processes. If we reexamine Figalhough it is a
only must we account for the stochastic nature of the emistime delay, not number counting histograemd focus on the
sion process, we must also consider the number distributiodashed line through the shakt domain, divergence from
of aggregates passing into the beam volume from the largehe single Poisson increases At increases. For binning
sample reservoir. windows smaller than the diffusion time, the statistics are
The statistics of the time series of the photon counting caprimarily due to the intrinsic fluorescence of the fluorophore.
be highlighted through Mandel® parametefEqg. (2.5)] in-  Since both systems contain two fluors, the two distributions
troduced in Sec. Il. We develop the binning moment as avary little in this domain. At longer times, each molecule
complementary technique to FIMDA. In FIMDAQ] each  samples the inhomogeneous beam profile as it diffuses.
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e have Wy, =\u(r) and W;o=X\,, Einstein’sA coefficient. The
30 [ 0%0 . E Schrddinger equatio.18) is split into two components:
25 3 a 3 J 2

.g E ee® E Elﬂoz (DV —)\U)l//0+2(t)7\sl,bl, (73)

£ o0 L a e ” 3

E > et o2 ]

g 15°L N o 3 J

P : S L= OV (74
10 L 3
5 E E The approximation employed in previous sections

E 1 amounts tong>N\ and\>1/7, the inverse diffusion time.

0 PR T T T N SO T ST SRS SO SO SO ST S ST SR T R T S’

In this case, the spontaneous emission is almost instanta-
neous once the fluorophore is excited and the second equa-
tion, (7.4), gives rise to\gi/y = \Uyy at equilibrium. Substi-
FIG. 5. Q parameters of+) single-dye andA) double-dyed  tuting it back(7.3), we obtain Eq(4.18) with h given by Eqg.

aggregates. A cartoon of each system is displayed next to the cot4-14). For the experimental data presented in this paper, a
responding curve. 60 kHz photon time delay histogram at 3 % detection effi-

ciency, the excitation rate is 60/3 % =2 MHz, and the cor-
esponding fluorescence time is 500 ns, much longer than the

pical spontaneous emission time, 10 ns. Our approximation
is therefore adequate.

0 0.0005 0.001 0.0015 0.002 0.0025
binning window [s]

Hence the diffusion dependent statistics dominate the lon
time domain and are responsible for the notably diffe@nt
parameters of the samples.

VIIl. CONCLUDING REMARKS

VIl. SECONDARY EFFECTS . .
We have developed a mathematical formulation to ana-

In traditional fluorescence correlation spectroscopy, tripletyze the time delay series of fluorescence photons from dif-
state effects and various quenching processes are the prinéitssing particles, based on a probability generating functional
pal mechanisms that overshadow structural information. T@nd its quantum mechanical analog. Although it may appear
parse out these contributions, one may need to explore thermal, since some analytical expressions such as the auto-
higher binning moments that have not been examined in thisorrelation function have been obtained by less sophisticated
work. Our mathematical formulation provides the completemeans, the approach is systematic. The potential of this gen-
systematics for this purpose. Such secondary effects intreeral approach will be realized when dealing with systems of
duce additional time scales to the problénot simply the greater complexity.
fluorescence rate and the diffusion time to cross the collec- We have designed an experiment to differentiate fluores-
tion volume discussed in this papeAlso, some details of cent aggregates in solution. ssDNA monomers are labeled
the electronic transition inside a fluorophore should be adwith a single fluorophore and dimers with two fluorophores.
dressed. This modeling can be achieved by enlarging th8econdary effects such as chemical reactions, triplet state
guantum mechanical analog with a multicomponent waveeffects, and various quenching processes have been ne-
function ¢; and a matrix Hamiltonian glected in our model. However these effects have been mini-
mized by using dilute solutions to avoid self-interaction and

hyj = - DV25ij +Vij, (7.2) Rhodamine 6G, a fluorophore with little triplet state at low
where incident intensities.
Although we have only addressed ideal experimental con-
zZ()W;  if i — s a fluorescence transition ditions of the nonreacting case in this paper, typical

W
Vij = 1l

if i — j is not a fluorescence transition ~ biological/chemical systems reag@ggregation or coopera-
tive binding. Our technique can be modified to include these
B Ek: Wi i j = j. reactions. One must generalize the quantum mechanical ana-
log to the case with several species of particles, each repre-
(7.2 senting a fluorescence molecule, interacting with each other.
Without going to technical details which will be reported

probability of a DNA molecule at a particular spatial location elsewhgre, we quote the ger}erahzatlon. of our formulation
with its fluorophore in theith electronic level and\; the analog in the presence of a binary reaction,
transition rates fronith— jth of electronic levels. A o B. (8.1)

In principle, such an elaboration should also be imple-
mented in the absence of triplet state effects and quenchinghe Hamiltonian of the quantum mechanical analog in Eq.
processes, since the fluorescence rate combines the excitatidh12 is given by
rate from the ground state and the spontaneous emission rate
from the excitgtion levels. For two elgctronic levels with “0” H = Hait + Huor + Henem (8.2
labeling the ground state and “1” the excitation state, wewhere

Each component of the wave functiog;, represents the
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APPENDIX A

Ha =fdsroe—.e ‘DY VH), (83
dift DAV -V Ve V) .3 1. The derivation of the formulas for distribution function

of the time-delay histogram

To derive theAt distribution (the distribution function of
Hauor =[1 —2(1)] f dst(F)[(XAZt//+ \ed®), (8.4  thetime interval between two successive photon emisgions
we start with the case with finite time biris is sufficiently
small that the probability of more than one photons within a
bin can be ignoredand look for the probability of one pho-

and ton event innth bin, one photon event itn+1)th bin with
At=(I-1)¢, and no photon in the bins between them. Up to a
1 3 3, P . normalization constant, the probability is
Heer= =3 | & | d" | d®Ro(RIF,7) RIUD )
1 e e — pni = const > P -m,_,10-01m, .y --m),
‘Ef dr f & f Re (7,7 R HD ) S(R) M M At My '
Jd 4
1 R R =— g(1,...,12z,0,...,0z4,1, ...,D. (AD)
o2 [ e [ @ [ Ror e mnuou) 92007 :

1( 4 T By summing oven with a fixedl, we find the probability of
to | ] dr | dRe(F [RIGRIGR), (8.5  glccessivé—1 empty bins

and the generating functional is no longer factorizable. In P zgp”" (A2)

this Hamiltonian, the pairs of operatof, ) or (¢, ) are

the creation/annihilation operators of a molecule of spekies Taking the limit of infinitesimal bins, i.e.€—0 at fixed T
or B. Dag) andAag are the diffusion constant and the spe- gng At, we obtain the desired distribution functiof.?).
cific brightness of the specie&(B). The first term of the
reaction partHqem represents the creation ofBamolecule,
the second term represents the creation of a pak ofol-
ecules, the third term signifies the annihilation of a paiAof Consider the case of a single time bin, iz 1, we have
molecules, and the last term signifies the annihilation Bf a

molecule. The functiomr(R|r,1”") or o’ (" |R) denotes the m

reaction rate in each direction of E(B.1). In physics, the G(2=> P,Z" (A3)
Hamiltonian(8.2) describes a system of interacting bosons of m=0

two species. The equilibrium state of the fluorescence-
diffusion-reaction process will be analogous to the ground,,q
state which carries a Bose condensate. The proportion of
each species in the condensate is determined by the mass-
action law and the fluctuations are calculable with well de-
veloped field theoretic method. In terms of the generating
functional (4.12) and the functional derivativéd.4), we are
able to calculate various correlation functions of the photo
counting histogram in the presence of chemical reactions u
ing techniques developed in quantum field theory. This ap
proach is expected to be more systematic than the conve
tional reaction kinetics.

2. Detector effect

)

Ge(2) = X P2, (A4)

m=0

Jnder the assumption that each photon counting by the de-
tector is statistically independent of others, the probability of
H_etectingm photons out oh incident photons is

n!

mih=mt 7M(1-n", (A5)
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OC . nl m n—m.
Ger(2) = z,o gm ann (1-np" "
=2 P n—!(772)’“(1 -

=0  meom!(n-m)!

o]

=D Pyl-n+n2)"
n=0
=G(1-n+n2). (A7)

Following the same steps for each variable in the case wit
N>1, we end up with Eqg4.10 and(4.11).

APPENDIX B

The probability generating functional of the photon emis-
sion histogram fromN identical fluorescence molecules is
modeled according to the following two principles.

The generating functional witN nonreacting molecules,

Glz(t]=gNz(1)],

with g[z(t)] the generating functional of one molecule.
The generating functional of one molecule,

(B1)

olz(t)]= % Peaclz(t)], (B2)

whereg[z(t)] denote the generating functional along a par-
ticular diffusion pathC and P, the probability of the path.

Dividing the integrating timeT into A time bins withtg
=0,... t,=ne, ... .ty,=Ne=T and specifying a diffusion
path C by the location of the molecule at each instant,
(tgy -+ ooty ..., 1), e,

i

C:{Fo, ...,Fn, ...,r/\/}.

(B3)

For sufficiently smalle, the probability of more than one
photon in each bin may be ignored and we have

N-1
gelz®)]=lim [T [1 - eAu(r) + eAzyu(7,)]
e—0n=0
N-1
= lim exp[)\ez (z,- 1)u(Fn)] . (B4)
e—~0 n=0

The probability of the patlt is entirely determined by dif-
fusion. Since the probability for a molecule to diffuse from
I att, to r.q att,. is

1 3/2 ~ o
( 4’7TD6) d3rn+1e_(r”"1 = o) 4De (B5)
N1 312 o
PC - H (4 ) d3|7n+le—(rn+l ) /4D5' (BB)
n=0 7De

It follows from Eqgs.(B2), (B4), and(B6) that

PHYSICAL REVIEW E 69, 051916(2004)

1 aviz ¢ NV
glz(t)] = 5}}?@(@) nI:[o d3exd - e% L.l
(B7)
with
L= i(M)2+ (-2, (B8)
4D €

where we have taken the average of the initial location of the
molecule,r,, over the volume of the solution. Mathemati-
gally, Egs.(B7) and(B8) present a path integral of a quan-
tum mechanical particle moving in an external potential
—z(t)]\u(r) in an imaginary time. A similar path integral has
been used to describe fluorescence correlafib®js Follow-

ing the standard proceduf20], we may cast Eq(B7) into

the canonical form

)
g[z(t)]:é<‘7’exp[— fo dth(t)} ‘ > (BY)

where7 is the time ordering operator,
h(t) = =DV?+[1 - z(t)]au(r)

is the analog of the quantum mechanical Hamiltonian opera-
tor and|0) is the analog of a quantum mechanical state,
whose wave function i¢])=1.

Finally, we would like to explain the operat@rin more
detail, when acting on a product of operator functions of
time, it arranges the order of these operators according to the
descending order of their time arguments, i.e.,

TO(t,)O(ty) - -- O(ty) = O(tpl)o(tpz) e O(tpn)' (B11)

with P{,P,, ... ,P, a permutation ofl,2,... n, such that
tp, =tp, =" =tp . This property, when applied to the Taylor
expansion of the exponential operator in E§9), yields

(B10)

T
Texgd- f dth(t)]
0

T T t,
= 1—J0 dth(t) +fo dtzfo dt;h(ty)h(ty)

T th t
+...+(_)nJ dth dtn—l'”J
0 0 0

Xh(ty-p) -~ h(ty) + -+ .

’ dt;h(t,)
(B12)

APPENDIX C

For a time independent operatdrand a time dependent
operatorB(t), the following identity holds with the time or-
dering product:

t T
Texp{—f ddA+ B(T)]] :e‘tA[Texp{—f drB(r)H,
0 0

(C1

with B(7)=e™B(r)e ™.
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The expansion of the function&t.21) that generates all The expansion in the diffusion constant for a nonreacting
correlation coefficients for a nonreacting system followssystem is obtained by applying the ident{i€1) with A=
from the identity(C1) with A=-DV? and B=[1-z(t)]Au(r). -\u, B=-DV?, andt=At, and making a Taylor expansion of
We find the second factor on the right-hand side of Egl):

T T
Aaw]=cl fo i1~ 201 - fo dtl1-2(t,)] o - C{ql o)

t
2

X J 2d[1 - 2ty K|u'z WPV ul)y + -], -
0 - J dg(|eNTIUpy gy 4 ... | (C5)

(C2) °

I =Cy(t) = cn(ul), (C3 This expansion corresponds to the strong coupling expansion
of the quantum mechanical analog.

and The calculation of the expectation valge--|) in Egs.

C(tt) = c)\2(|ué“t’|DVzu|>. (Ca) (C_:2) and (CYH) is facilitated by swnchlng between the coor-
dinate and momentum representations of the quantum me-
This expansion is parallel to the perturbative expansion othanical analog. The statgis the state of zero momentum

the quantum mechanical analog. and is normalized the volume of the system.
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