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In order to discern aggregation in solution, we present a quantum mechanical analog of the photon statistics
from fluorescent molecules diffusing through a focused beam. A generating functional is developed to fully
describe the experimental physical system as well as the statistics. Histograms of the measured time delay
between photon counts are fit by an analytical solution describing the static as well as diffusing regimes. To
determine empirical fitting parameters, fluorescence correlation spectroscopy is used in parallel to the photon
counting. For expedient analysis, we find that the distribution’s deviation from a single Poisson shows a
difference between two single fluor monomers or a double fluor aggregate of the same total intensities. Initial
studies were performed on fixed-state aggregates limited to dimerization. However preliminary results on
reactive species suggest that the method can be used to characterize any aggregating system.
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I. INTRODUCTION

Aggregation and cooperative binding are fundamental to
biological function and regulation, but difficult to observe at
the few molecule level. Recent advances in few molecule
solution spectroscopy have been achieved by combining the
comparatively large signals of fluorescence with recent tech-
nological advances in photon counting(e.g., low noise de-
tectors). One powerful technique, fluorescence correlation
spectroscopy(FCS), has enabled researchers to observe
many small ensemble processes such as diffusion[1], mo-
lecular conformational dynamics[2], and reaction kinetics
[3]. In FCS, fluctuations in fluorescence intensity are tempo-
rally correlated to reveal the time scale of the underlying
fluctuation source. In the simplest case, this could be the
diffusion time scale of a fluorescent molecule through a sam-
pling volume. However, it is difficult to discern aggregation
based on the diffusion time alone since the increase in diffu-
sion time between a monomer and a dimer is weakly depen-
dent on the increase in effective radius(~kr2l1/2 for hard
spheres) [4].

An alternative approach to FCS is the statistical analysis
of the time series of emitted photons(number counting Fig.
1), since the number distribution of fluorophores in the de-
tection volume at any given moment is different for species
of different quantum yield or fluorophore number. This
analysis, called photon number counting histogram analysis
[5,6], was originally developed to detect the “brightness” per
particle, but relied on the static(nondiffusing) limit. How-
ever in experiment, several factors potentially overshadow
the specific brightness signature of a fluor, such as triplet
states, bleaching, or quenching. We propose a method of
analysis, thetime delay histogram, to discern small differ-

ences in a species’ fluorescence complemented by differ-
ences in diffusive behavior. The time delay histogram is con-
structed of the time between successive photon counts(Fig.
1). Unlike counting the number of events per time bin, this
type of counting allows us to extract additional information
about the diffusion. Conceptually, as more fluorinated mono-
mers aggregate, the fluorophores sample the detection vol-
ume in bunches. This increases the chance of a large time
interval between two successive emission photons and the
large Dt tail of the time delay histogram has an increased
frequency.

To extract the information on the structural change, we
have developed a generating functional to unify different sta-
tistical aspects of the photon time series. This functional is
modeled as a transition matrix element of a fictitious quan-
tum mechanical system evolving in an imaginary time. Many
well developed techniques in quantum mechanics are bor-
rowed to derive analytical expressions for other experimental
observables such as the autocorrelation function. Our ap-
proach is complementary to the description model proposed
by Novikov and Boens[7] for the photon counting histo-
gram. An extension of our functional can also be applied to
modern multi channel techniques[8,9] as well as the incor-
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FIG. 1. Schematic of a photon counting trace. Traditional pho-
ton counting divides the total integration time into bins, counting
the number that fall into each. We propose a different type of count-
ing based on the time delay between two successive photon counts.
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poration of secondary processes such as triplet states, bleach-
ing, quenching, and chemical reaction kinetics.

Recently Kask and co-workers also proposed a method to
extract the diffusion signature of a particle through fluores-
cence intensity multiple distribution analysis(FIMDA ) [9].
In FIMDA, many histograms are constructed from the same
time trace as the bin size is varied. In contrast, the time delay
histogram we propose, contains the diffusion signature of the
aggregate in asingle histogram. At small time delays(less
than the diffusion time through the collection volume) we are
sensitive to the rate of photons emitted per object, and at
greater delays, diffusion dominates the statistics. Finally, we
offer a complementary technique to FIMDA using the Man-
del Q parameter[12] to expediently extract diffusion infor-
mation from number counting distributions. The power of
this technique could be increased by greater photon collec-
tion capabilities, leading to better statistics and ultimately
better discrimination, including higher moments, in the large
delay limit.

To demonstrate the sensitivity of our analysis, we choose
a case where the difference in diffusion times is negligible. A
particularly difficult case is the discrimination of two mono-
mers of identical fluorescence from a single dimer with the
sum of their fluorescence. Although both have the same av-
erage rate of emitted photons, they sample the excitation
beam profile differently as they diffuse(inhomogeneous in-
tensity profile of a focused beam). For the experiment, a
sequence of single-stranded DNA is specifically tagged with
either one or two fluorophores per strand. The single-dyed
strands will be considered “monomers” and the doubled
tagged as “dimers.” For all cases, we find good discrimina-
tion between samples of a given concentration of dimers ver-
sus that of twice the concentration of monomers, where both
samples have the same average fluorescence.

II. OVERVIEW OF APPROACH

The time series of photon events may be described by the
instantaneous fluorescence intensity

Istd = o
n

N

dest − tnd, s2.1d

wheret1,t2, . . . ,tn, . . . ,tN correspond to the tick marks of Fig.
1 with N total number of photons counted ande is the de-
tector resolution.dest− tnd=1/e for ut− tnu,e and dest− tnd
=0 otherwise. In the theoretical analysis of the subsequent
sections, we shall take the limite→0 so the instantaneous
intensity becomes a random spike function. In the current
literature statistical analysis tends to be limited to the aver-
age intensity,

I =
1

T
E

0

T

dtIstd, s2.2d

and various types of correlation functions, the most familiar
being the autocorrelation function

Astd =
1

I2F 1

T
E

0

T−t

dtIstdIst + td − I2G − destd s2.3d

for T@t, which decays with a characteristic time scaletD,
the diffusion time through the collection volume. The sub-
traction ofde permitsAstd to vanish for allt for a Poissonian
histogram. Dividing the integration time intoNb bins of
equal time intervalt, i.e., T=Nbt, the number of photon
counts falling within the time bins arem1,m2, . . . ,mNb

, and
their moments

Ml =
1

Nb
o
n=1

Nb

mn
l s2.4d

carry the structural information of the underlying fluores-
cence molecules. The quantity for comparison, called the
Mandel’sQ parameter, is defined as

d ;
M2 − M1

2 − M1

M1
, s2.5d

where the first moment is defined byM1= It, etc. Although
higher moments yield greater differentiation, we limit our
analysis to the second moment due to the experimental col-
lection capabilities(ø216 photons) of our system. The defi-
nition (2.3) and the relationmn=esn−1dt

nt dtIstd directly relates
the Q parameter to the autocorrelation function,

d =
2I

t
E

0

t

dsst − sdAssd. s2.6d

Similar relations exist between higher order correlation func-
tions and higher order binning moments.

Finally we describe the time delay histogram of the dis-
tribution of time intervals between two successive photon
events, i.e.,Dt1,Dt2, . . . . For sufficiently large number of
photon counts, a distribution function ofDt, rsDtd, can be
extracted, which has not been discussed in the literature. The
theory of this function will be developed in Secs. IV and V
will be compared with experimental result in Sec. VI.

III. EXPERIMENTAL MATERIALS AND METHODS

To create well-defined single or double fluor elements,
short pieces of single-stranded DNA(ssDNA) were used as
substrates. Either one or two fluorophores can be site-
specifically coupled to each DNA oligomer(29 bases in
length), dependent on the number of end-strand modifica-
tions (primary amino linker arms, Midland Certified Reagent
Co.). Succidinmyl ester Rhodamine 6G(molecular probes)
was coupled to the modified sites in the presence of DMF,
and purified by gel filtration and reverse phases chromatog-
raphy [high performance liquid chromatography(HPLC)].

The experimental setup(Fig. 2) is an inverted confocal
microscopy arrangement. The sample is illuminated by the
514.5 nm line of a Ar+ laser(Lexel 85) focused through a
603 water immersion objective(numerical aperture 1.2,
Olympus). Incident power was empirically optimized at
100 mW, so that the photon counts per object were at least
50 000 cps, while avoiding significant population of the trip-
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let state or bleaching. Emitted photons are collected through
the same objective, directed through a high-pass dichroic
mirror (Omega Optical) and a notch filter(Kaiser Optical) to
reduce collection of on-axis elastically scattered photons.
The collection volume is further refined by focusing the light
onto a 25mm pinhole, eliminating off angle scattering as
well as spatially defining the collection volume. The collec-
tion volume was empirically determined through the number
of molecules measured through FCS as a function of increas-
ing concentration. All FCS measurements were 10 min in
duration using a ALV 5000 E board for data collection and
in-house data analysis software for fitting. The overall detec-
tion efficiency of the setup is 3 %. Photons are detected by a
counting avalanche photodiode(EG&G/Perkin Elmer), pulse
width 25 ns, whose signal is processed by task specific
counting board(NI-TIO 6602 National Instruments), con-
trolled by LabVIEW. The period between each photon is
measured by counting the number of external clocks4 MHzd
pulses(source) between each photon pulse(gate). 216 photons
are collected for each trial. Data acquisition technology lim-
ited the total collection time to 1–2 s, depending on the in-
cident intensity. After pulsing artifacts from the photodiodes
were measured,100 ns, with comparison to cross correla-
tion of the same signal in two perpendicular detectors. Digi-
tal filtering was used to subtract the after pulsing noise from
the final histogram statistics. DNA concentrations are
,nanomolars in PBS buffer such that only one monomer
molecule at any time is within the collection volume.

Photon counting data are collected as fluorescent particles
diffuse through the sample volume. When the particles are
outside the volume they are dark and undetectable. As they
enter the volume they are excited with a certain probability
and emit a temporal pattern of photons that are detected by a
counter. Given a long integration time, many particles diffuse
through the volume producing temporal fluctuations in fluo-
rescence. Whereas the autocorrelation function reveals the
time scale of these fluorescence fluctuations, the probability
distribution characterizes their amplitude.

IV. A MATHEMATICAL THEORY OF TIME
DELAY HISTOGRAM

While there exist many papers in the literature on the
mathematical properties of the photon event histogram[5,6],

here we would like to provide a unified approach, which ties
the experimental observables such as fluorescence intensity,
autocorrelation, the binning moments, and time delay histo-
gram to a probability generating functional.

A. General formulation

To begin, we divide the integration timeT into N bins,
each of intervale, i.e., T=Ne. Each fluorescence diffusion
process produces a histogram of photon counting,
hm1, . . . ,mNj, with ml the number of photon events within
the lth time bin and the corresponding fluorescence intensity
given by

I l =
ml

e
. s4.1d

Let Pm1¯mN stand for the probability of this particular time
delay histogram. The generating function of this set of prob-
abilities is defined as

Gsz1, . . . ,zNd = o
m1,. . .,mN

Pm1¯mNzm1
¯ zmN, s4.2d

which is properly normalized, i.e.,Gs1, . . . ,1d=1. In the
limit e→0 (or, equivalentlyN→` with a fixed T), the se-
quenceshz1, . . . ,zNj andhI1, . . . ,INj become two functions of
t, zstd and Istd, such thatzsled=zl and Isled= I l. In particular,
ase→0, mostm’s vanish, few of them are equal to one, and
the probability ofml .2 becomes negligible. The function
Istd approaches the random spike function introduced in the
last section. In the same limit, the generating function(4.2)
becomes a generating functional

Gfzstdg = lim
N→`

Gsz1, . . . ,zNd. s4.3d

An important set of observables are various correlation func-
tions given by the functional derivatives ofG with respect to
zstd at zstd=1, i.e.,

Cnst1, . . . ,tnd =
d

dzst1d
¯

d

dzstnd
ln Gfzstdguzstd=1. s4.4d

The functionC1std is nothing but the ensemble average of
the instantaneous fluorescence intensity at the momentt,

kIstdl = C1std, s4.5d

the coefficientC2st1,t2d is related to the autocorrelation func-
tion betweent1 and t2 via

Ast1,t2d =
C2st1,t2d

C1st1dC1st2d
, s4.6d

and the coefficientsCnst1, . . . ,tnd’s for n greater than or equal
to 3 represent higher order correlations. For the observation
times t1, . . . ,tN sufficiently away from the beginning of the
integration time so that transient process may be ignored,
these functions depend only on time differences. In particu-
lar, C1std becomes a constant andCst1,t2d depends only on
t= t2− t1. In this way, we can reconcile the experimentally

FIG. 2. Schematic of the photon counting setup. OBJ
=objective, DM=dichroic mirror, NF=notch filter, PH
=pinhole, APD=avalanche photodiode, CB=counting board, CO
=correlator board.
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defined fluorescence intensity and the autocorrelations of the
preceding section.

The distribution function of the time intervalDt between
two successive photon events,rsDtd, referred to asDt distri-
bution, can also be extracted by the probability generating
functional

rsDtd =
const

T
E

0

T

dt
d

dzstd
d

dzst + Dtd

3Gfzstdguzstd=1−ust−tdust+dt−td, s4.7d

whereustd=1 for tø0 andustd=0 otherwise, and the con-
stant is determined by the condition

E
0

T

dDtrsDtd = 1. s4.8d

We refer the reader to Appendix A for its derivation. For a
Poissonian histogram, Eq.(4.7) impliesrsDtd=le−lDt, as ex-
pected.

What is relevant to the actual observation is the detected
photons rather than the total number of emitted ones. Let
Pm1,. . .,mN

eff denoted the probability of a particular histogram
hm1, . . . ,mNj of detected photons. The corresponding gener-
ating function reads

Geffsz1, . . . ,zNd = o
m1,. . .,mN

Pm1m2¯mN
eff zm1

¯ zmN. s4.9d

As is shown in Appendix A, under the assumption that all
photon counts are statistically independent, we find a simple
relation

Geffsz1, . . . ,zNd = Gs1 − h + hz1, . . . ,1 −h + hzNd,

s4.10d

with h the efficiency of the detector. In the limitN→`, it
becomes

Gefffzstdg = Gf1 − h + hzstdg. s4.11d

B. A quantum mechanical analog

The formulation we have established thus far is com-
pletely general, and independent of details of the fluores-
cence diffusion process. We shall now include the details of
the physical process and model the generating functional
Gfzstdg. ConsiderN molecules, each having a specific bright-
ness, and diffusing in a solution of total volumeV. Both
V→` andN→`, at a fixed concentrationc=N/V. An axi-
ally symmetric intensity profile is created by focusing the
laser beam within the sample solution. While fluorescence
occurs everywhere along the beam volume, the pinhole ef-
fectively eliminates the collection of photons emitted far
away from the focal point[10] and a small detection volume
is defined, which contains few molecules in average at all
times. In the absence of chemical reactions(no self-
hybridization), sufficiently weak laser intensity, and suffi-
ciently low concentrations, we may assume that(i) N mol-
ecules do not interact with each other(except minimal

collisions which maintain the equilibrium); (ii ) photon emis-
sions are statistically independent; and(iii ) the photon emis-
sion frequency per fluorophore within the detection volume
is l0usrWd. usrWd will be referred to as the fluorescence profile
function and is normalized by the conditionus0d;umaxsrWd
=1. Under these assumptions, the probability generating
functional takes the same mathematical expression of the
transition matrix element of a quantum mechanical system of
N noninteracting bosons in an external potential field and
imaginary time, i.e.,

Gfzstdg = S 1

V
DNKUT expF−E

0

T

dtHstdGUL , s4.12d

whereT enforces the time ordering andV is the volume of
the solution and will be sent to infinity for all practical pur-
poses. The Hamiltonian operator of the analog quantum me-
chanical system reads

Hstd = o
j=1

N

hsrW j,td s4.13d

and

hsrW,td = − D¹2 + f1 − zstdglusrWd, s4.14d

where D is the diffusion constant andl=kl0 with k the
effective number of fluorophores per molecule. The full deri-
vation of Eqs.(4.12)–(4.14) is presented in Appendix B. The
wave function of the stateul of the analog quantum mechani-
cal system is normalized to

krW1, . . . ,rWNul = 1. s4.15d

We notice the following.
The Hamiltonian operator(4.14) describes the motion of

a particle of masss2Dd−1 moving in an external potential
f1−zstdglusrWd. Two kinds of expansions can be developed
for the statistical analysis. The first is a perturbative expan-
sion according to the powers of 1−zstd, which generates the
correlation functions to all orders. The second is the expan-
sion according to the powers of the diffusion constantD,
which is particularly useful for FCS with biological mol-
ecules. The leading order of the second expansion corre-
sponds to the frozen limit in the literature[5,6] and we are
able to add the higher order corrections systematically fol-
lowing this quantum mechanical analog.

It follows from Eqs.(4.11) and(4.14) that the generating
functional responsible for the observed time delay histogram,
Gefffzstdg, assumes the identical mathematical form as
Gfzstdg, providedl is replaced byleff=hl. In what follows,
we shall refer exclusively toGefffzstdg with the subscript
“eff” suppressed.

The generating functional(4.12) can be factorized for
each aggregate, i.e.,

Gfzstdg = gNfzstdg, s4.16d

with

REN et al. PHYSICAL REVIEW E 69, 051916(2004)

051916-4



gfzstdg =
1

VKUT expF−E
0

T

dthsrW,tdGUL s4.17d

and krWul=1. Alternatively,gfzstdg can be calculated by inte-
grating the wave functioncsrW ,td that solves the Schrödinger
equation with an imaginary time,

]

] t
csrW,td = − hsrW,tdcsrW,td s4.18d

subject to the initial condition,csrW ,0d=1/V, i.e.,

gfzstdg =E d3rWcsrW,Td. s4.19d

To take the limit ofV→` andN→` at a fixed concentra-
tion c, it is crucial to notice that the differencegfzstdg−1 is
Os1/Vd for a small collection volume of few molecules in
average. Using the standard limit, limN→`s1+x/NdN=ex, we
obtain that

Gfzstdg = e−Ffzstdg, s4.20d

with

Ffzstdg = cKU1 −T expF−E
0

T

dthsrW,tdGUL . s4.21d

C. Generalization to multispecies and multichannels

We generalize the present formulation to include several
species of fluorescent molecules with multiple channels of
detection. Assuming there areM species each labeled by an
index l and K detecting channels each labeled bya, the
Hamiltonian of the analog quantum mechanical system,
(4.13), becomes

Hstd = o
l=1

M

o
j=1

Nl

hlsrW j,td, s4.22d

with

hlsrW,td = − Dl¹
2 + o

a=1

K

f1 − zastdgllasrWd, s4.23d

wherellasrWd the profile function specific to thelth species
andath channel. The generating functional(4.12) factorizes
into a product of a single species, where each now depends
on several arbitrary functionszastd. The power series expan-
sion according tof1−zastdg’s yields all the corresponding
correlation functions. Unlike number counting in the frozen
limit, it can be factorized into individual detecting channels
for nonzero diffusion constants.

V. ANALYTICAL EXPRESSIONS FOR DATA ANALYSIS

In this section, we shall display the analytical expressions
for fluorescence intensity, the autocorrelation function, Man-
del’s Q parameter, and theDt distribution, as derived from

the general formulation of the preceding section. The techni-
cal details of the derivation are deferred to Appendix C.

A. Fluorescence intensity, correlation functions,
and the binning statistics

In accordance with Eqs.(4.4) and(4.5), the ensemble av-
erage of the fluorescence intensity reads

I = clE d3rWusrWd = nl, s5.1d

where n=cv with v;ed3rWusrWd. The integrationv can be
viewed as the effective collection volume defined by the fo-
cused beam and pinhole andn, the average number of mol-
ecules within the volume. The experiments reported in this
paper are characterized byn,1.

Applying the definition(4.4) and the quantum mechanical
analog(4.12)–(4.14) of Gfzstdg, the second-order correlation
C2st1,t2d takes the form

C2st1,t2d = cl2E d3pW

s2pd3upW
2e−ut1−t2uDp2

, s5.2d

with upW =ed3rWe−ipW·rWusrWd the Fourier transformation of the pro-
file function usrWd. Substituting Eqs.(5.1) and (5.2) into Eq.
(4.6) for the autocorrelation function, we find the following.

For an arbitraryusrWd, the autocorrelation function at zero
time lag takes a simple form

As0d =
Z

n
, s5.3d

with Z the geometrical factor given by

Z =
E d3rWu2srWd

E d3rWusrWd
. s5.4d

For nonzero time lag, we shall parametrize the autocorrela-
tion function as

Astd =
Z

n
Astd, s5.5d

with As0d=1.
For a three-dimensional Gaussian fluorescence profile,

usrWd = e−sx2+y2d/2v'
2 −z2/2vi

2
, s5.6d

we obtain thatZ=1/2Î2 andf1g

Astd =
1

S1 +
t

t'

DÎ1 +
t

ti

, s5.7d

with t'=v'
2 /D and ti=vi

2/D. For a Gaussian-Lorentzian
profile,
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usrWd =
vi

2

vi
2 + z2e−sx2+y2d/2v'

2
, s5.8d

we find thatZ= 1
4 and

Astd =
2

S1 +
t

t'

DÎ
ti

t
et/tierfcSÎti

t
D , s5.9d

with

erfcszd =E
z

`

dxe−x2
=

ez2

2z
F1 −

1

2z2 + Osz−4dG . s5.10d

For t!ti and t'!ti, both Eqs.s5.7d and s5.9d can be ap-
proximated by

Astd =
1

1 +
t

t'

. s5.11d

Extending the same analysis to the third-order coefficient of
the expansion of lnG according to the power ofzstd−1, we
find the third-order correlation function fort'!ti, i.e.,

C3st1,t2,t3d =
Z8

S1 +
t

t'

DS1 +
t8

t'

D −
1

4

, s5.12d

where the constantZ8 is another geometrical factor, such as
Z for the autocorrelation,t; ta− tb, t8; tb− tc with ta, tb, and
tc a permutation oft1, t2, andt3 such thatta. tb. tc.

Using Eq.(2.6), we obtain the expression of theQ param-
eter which agrees with that of FIMDA[11]. For t!ti it can
be approximated by

d = 2Zlt'S t + t'

t
ln

t + t'

t'

− 1D , s5.13d

with the dependence on different models of longitudinal pro-
file absorbed in the constantZ.

The distribution of photon counting numbers within a
time bin can be extracted from the generating functionGszd,
obtained from the generating functionalGszd by restricting

the form ofzstd such that it equals to a constantz within the
time bin and vanishes elsewhere. We then have

Gszd = e−nFstu1−zd, s5.14d

with

Fstuzd ;
c

n
ku1 − e−thszdul s5.15d

and

hszd = − D¹2 + zlusrWd. s5.16d

While an analytical expression forFst uzd does not exist in
general, the expansion according to diffusion constant can be
obtained easily,

Fstuzd = zltfszltd −
1

3lt'

z2l2t3f8szltd + OS 1

l2t'
2 D ,

s5.17d

with

fsxd =
4

3Îp
E

0

1

dj ln3/21

j
e−xj, s5.18d

where the leading term corresponds to the frozen limit in
Ref. [11] and the second term improves the approximation
further.

B. The time delay histogram

Carrying out the functional derivatives in the formulas
(4.7) with the aid of Eqs.(4.16) and (4.17), the distribution
function rsDtd becomes

rsDtd =
1

ln

d2

dDt2
e−nFsDtu1d

= lF−
]2F

] slDtd2 + nS ] F

] slDtdD
2G

3e−nFsDtu1d. s5.19d

Using expansion(5.17), we derive an approximate expres-
sion of rsDtd which is valid forlt'@1 andDt!t',

ln rsDtd = ln rs0d − nxfsxd + lnHffsxd + xf8sxdg2 −
1

n
f2f8sxd + xf9sxdgJ

+
1

lt'

5−
1

3
nx3f8sxd +

2xf8sxd + 2x2f9sxd +
1

3
x3f-sxd − 2nx3ffsxd + xf8sxdgF f8sxd −

1

3
xf9sxdG

− 2f8sxd − xf9sxd + nffsxd + xf8sxdg2 6 , s5.20d
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with x=lDt. Alternatively, a Taylor expansion ofF in lDt
yields an expression ofrsDtd for lDt!1.

For Taylor expansion of the functionF according to the
power ofDt, we obtain

ln rsDtd = ln rs0d − sn + gdlDt + 1
2sb − g2dl2Dt2 + OsDt3d,

s5.21d

where

g =

3−3/2 + 2−1/2n +
2−3/2

lt'

2−3/2 + n

and

b = s2−3/2 + nd−1F1

8
+ S3

8
+ 2 · 3−3/2Dn + 2−3/2n2

+
4 · 3−5/2 + 2−1/2n

lt'

G . s5.22d

If the histogram were a Poissonian, a single exponential
would be expected, which corresponds tob=g=0. The pa-
rametersb andg represent the deviation from a Poissonian
which do not vanish even in the frozen limit, i.e.,t'→` and
ti→`.

VI. RESULTS

Photon counting data were collected for two systems, and
the time delay histogram constructed for each(Fig. 3). Both
samples consist of very dilute(nanomolar) identical se-
quences of ssDNA in buffer, and observations were made at
room temperatures25 °Cd. We consider these systems non-
interacting. In the first sample, specifically single end-labeled
ssDNA was diluted to an average concentration of 1 mol-
ecule per collection beam volume at any time. The number
of molecules was calculated from calibration of the collec-

tion volume (see Methods) at 100mW incident power
s0.35mm3d. The second sample contained the same sequence
ssDNA, however, tagged with two fluorophores per object
(one at each end). This sample was then diluted so that the
average intensity in time of the two samples wereequal. If
the dimer system was exactly twice the fluorescence of the
monomer, then the dimer concentration should be 0.5 that of
the monomer for the same given intensity. However, due to
local quenching effects of the fluorophore, the average con-
centration of double-dyed molecules in the beam at any time
was calculated to be 0.7 to maintain the same intensity. The
empirical volume of the beam was calibrated from a serial
dilution of a standard dye solution, and the rate of emitted
photons per fluor,l, measured: 1/l=1/60kHz. Concentra-
tions of single/double fluorescent aggregates in the beam
were 1 and 0.7 molecules, respectively.

Empirical measurements demonstrated the quenching
could be minimized by hybridization of the ssDNA to a non-
fluorescent target. Hybridization of such a short segment(be-
low the persistent length of dsDNA) forces the two fluoro-
phores farther apart, minimizing dye-dye interaction.
However, double-dyed molecules never demonstrated a full
factor of 2 increase in fluorescence over their single-dyed
counterparts. We suspect local quenching interaction of the
fluor with the nearby base of the target strand.

The characteristic diffusion time through the sampling
volume was extracted from the decay of the autocorrelation
function. Due to the resolution of our correlator software
s10−8 s−10−2 sd, we are most sensitive to the diffusion
across the short axis of the beam profile. Hence, the charac-
teristic time extracted from time correlation of the data is
most representative oft'. Through FCS measurements, we
find that t'.300 ms for both single-dyed molecules and
double-dyed molecules. Using a random walk simulation and
a geometrical approximation for the long axis of the beam
profile, we estimateti to be 100t'.

In all theoretical curves of the figures below, we usel
=60 kHz for specific brightness of the single-dyed molecules
and an enhancement of 1/0.7.1.4 for the double-dyed mol-
ecules. The transverse diffusion timet'=300ms is substi-
tuted into the theoretical formula for both single-dyed and
double-dyed molecules.

At first glance, the two distributions of Fig. 3 are com-
pletely indistinguishable. However upon closer examination
it is possible to see the two curves slowly diverge at largeDt
with the double-dye data falls slightly above the single-dye
data. The comparison between the analytical expression of
the time delay histograms with large and smallDt approxi-
mations(5.20) and(5.21) is shown in Fig. 4, where the ratio
of the experimental histogram to the theoretical one is plot-
ted versus the time delayDt. It is evident that the formula
(5.19) together with the approximation(5.17), denoted as
rtheorysDtd in the figures, is robust for single-(a) and double-
dyed(c) samples.(b) and(d) are exploded views of the small
Dt domain of each histogram. The curve labeled by “linear”
or “quadratic” corresponds to the theoretical formula(5.21)
with terms beyond linear or quadratic truncated. The quality
of the agreement is improved from the linear truncation to

FIG. 3. The time delay histograms for single(black) and double
(gray) labeled ssDNA. The resulting distributions from a single
Poisson processes are shown by the straight lines for comparison.
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the quadratic truncation. The curve labeled by “Poisson” cor-
responds to rtheorsDtd given by a Poissonian, i.e.,
ln rtheorsDtd=ln rtheors0d−lDt, which is clearly a poor de-
scription of the experimental histogram.

Although these simulations successfully differentiate the
two systems, the analysis is somewhat cumbersome. A com-
mon mathematical technique to highlight the subtle differ-
ences in distributions is moment analysis. Similar techniques
have proven useful in fluctuation spectroscopy[13–15]. The
first moment is the mean, the second moment the standard
deviation, the third the skewness, etc.

Returning to Fig. 3, we note a profound difference be-
tween the experimental data and a single Poissonian process.
The straight lines represent two hypothetical single Poission
systems with different time scales. For the simple detection
of emitted photons within a fixed volume one might expect
the statistics to resemble a single Poissonian process[16].
However, when the particles are allowed to diffuse through
the boundaries of the volume, an additional Poissonian pro-
cess contributes to the overall photon statistics[17,18]. Not
only must we account for the stochastic nature of the emis-
sion process, we must also consider the number distribution
of aggregates passing into the beam volume from the larger
sample reservoir.

The statistics of the time series of the photon counting can
be highlighted through Mandel’sQ parameter[Eq. (2.5)] in-
troduced in Sec. II. We develop the binning moment as a
complementary technique to FIMDA. In FIMDA[9] each

histogram is representative of the number count distribution
using a certain binning window size. For every change in
binning window size, a new histogram is constructed. Like-
wise, every histogram has its own unique set of moments.
All first moments should be equal to the product of the av-
erage intensity and the window size will not show any dif-
ference between the two systems(single dye and double dye)
in accordance with the experimental procedure described in
the first paragraph of this section. Starting with the second
moment, the difference between the two systems emerges. In
Fig. 5, we plot the second moment normalized according to
Eq. (2.5) for both system and the corresponding theoretical
curve given by Eq.(5.13). The data for the two systems are
clearly distinguishable and agree well with the theoretical
prediction.

If the photon histogram were a single Poissonian, all cor-
relations as well as theQ parameter would vanish. Therefore
the correlation functions and theQ parameter measure the
deviation of the photon histogram from a Poissonian. Recall
that the time delay histogram is essentially the result of two
Poissonian processes. If we reexamine Fig. 3(although it is a
time delay, not number counting histogram) and focus on the
dashed line through the shortDt domain, divergence from
the single Poisson increases asDt increases. For binning
windows smaller than the diffusion time, the statistics are
primarily due to the intrinsic fluorescence of the fluorophore.
Since both systems contain two fluors, the two distributions
vary little in this domain. At longer times, each molecule
samples the inhomogeneous beam profile as it diffuses.

FIG. 4. (a) largent single fluor,(b) small nt single fluor,(c) largent double fluor, and(d) and smallnt double fluor.(Solid) Poisson,
(short dash) linear, and(long dash) quadratic fits are shown for comparison in the short time limits.
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Hence the diffusion dependent statistics dominate the long
time domain and are responsible for the notably differentQ
parameters of the samples.

VII. SECONDARY EFFECTS

In traditional fluorescence correlation spectroscopy, triplet
state effects and various quenching processes are the princi-
pal mechanisms that overshadow structural information. To
parse out these contributions, one may need to explore the
higher binning moments that have not been examined in this
work. Our mathematical formulation provides the complete
systematics for this purpose. Such secondary effects intro-
duce additional time scales to the problem(not simply the
fluorescence rate and the diffusion time to cross the collec-
tion volume discussed in this paper). Also, some details of
the electronic transition inside a fluorophore should be ad-
dressed. This modeling can be achieved by enlarging the
quantum mechanical analog with a multicomponent wave
function ci and a matrix Hamiltonian

hij = − D¹2di j + Vij , s7.1d

where

Vij =5
zstdWij if i → j is a fluorescence transition

Wi j if i → j is not a fluorescence transition

− o
k

Wik if i = j .

s7.2d

Each component of the wave function,ci, represents the
probability of a DNA molecule at a particular spatial location
with its fluorophore in theith electronic level andWij the
transition rates fromith→ j th of electronic levels.

In principle, such an elaboration should also be imple-
mented in the absence of triplet state effects and quenching
processes, since the fluorescence rate combines the excitation
rate from the ground state and the spontaneous emission rate
from the excitation levels. For two electronic levels with “0”
labeling the ground state and “1” the excitation state, we

haveW01=lusrWd and W10=ls, Einstein’sA coefficient. The
Schrödinger equation(4.18) is split into two components:

]

] t
c0 = sD¹2 − ludc0 + zstdlsc1, s7.3d

]

] t
c1 = sD¹2 + lsudc1 − luc0. s7.4d

The approximation employed in previous sections
amounts tols@l and l@1/t', the inverse diffusion time.
In this case, the spontaneous emission is almost instanta-
neous once the fluorophore is excited and the second equa-
tion, (7.4), gives rise tolsc1.luc0 at equilibrium. Substi-
tuting it back(7.3), we obtain Eq.(4.18) with h given by Eq.
(4.14). For the experimental data presented in this paper, a
60 kHz photon time delay histogram at 3 % detection effi-
ciency, the excitation rate is 60/3 % =2 MHz, and the cor-
responding fluorescence time is 500 ns, much longer than the
typical spontaneous emission time, 10 ns. Our approximation
is therefore adequate.

VIII. CONCLUDING REMARKS

We have developed a mathematical formulation to ana-
lyze the time delay series of fluorescence photons from dif-
fusing particles, based on a probability generating functional
and its quantum mechanical analog. Although it may appear
formal, since some analytical expressions such as the auto-
correlation function have been obtained by less sophisticated
means, the approach is systematic. The potential of this gen-
eral approach will be realized when dealing with systems of
greater complexity.

We have designed an experiment to differentiate fluores-
cent aggregates in solution. ssDNA monomers are labeled
with a single fluorophore and dimers with two fluorophores.
Secondary effects such as chemical reactions, triplet state
effects, and various quenching processes have been ne-
glected in our model. However these effects have been mini-
mized by using dilute solutions to avoid self-interaction and
Rhodamine 6G, a fluorophore with little triplet state at low
incident intensities.

Although we have only addressed ideal experimental con-
ditions of the nonreacting case in this paper, typical
biological/chemical systems react(aggregation or coopera-
tive binding). Our technique can be modified to include these
reactions. One must generalize the quantum mechanical ana-
log to the case with several species of particles, each repre-
senting a fluorescence molecule, interacting with each other.
Without going to technical details which will be reported
elsewhere, we quote the generalization of our formulation
analog in the presence of a binary reaction,

2A ⇔ B. s8.1d

The Hamiltonian of the quantum mechanical analog in Eq.
(4.12) is given by

H = Hdiff + Hfluor + Hchem, s8.2d

where

FIG. 5. Q parameters ofs•d single-dye andsnd double-dyed
aggregates. A cartoon of each system is displayed next to the cor-
responding curve.
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Hdiff =E d3rsDA¹W c̄ ·¹W c + DB¹W f̄ ·¹W fd, s8.3d

Hfluor = f1 − zstdg E d3rusrWdfslAc̄c + lBf̄fd, s8.4d

and

Hchem= −
1

2
E d3r E d3r8E d3RW ssRW urW,rW8df̄sRW dcsrWdcsrW8d

−
1

2
E d3r E d3r8E d3RW s8srW,rW8uRW dc̄srWdc̄srW8dfsRW d

+
1

2
E d3r E d3r8E d3RW ssRW urW,rW8dc̄srW8dc̄srWdcsrWdcsrW8d

+
1

2
E d3r E d3r8E d3RW s8srW,rW8uRW df̄sRW dfsRW d, s8.5d

and the generating functional is no longer factorizable. In

this Hamiltonian, the pairs of operatorssc ,c̄d or sf ,f̄d are
the creation/annihilation operators of a molecule of speciesA
or B. DAsBd andlAsBd are the diffusion constant and the spe-
cific brightness of the speciesAsBd. The first term of the
reaction part,Hchem, represents the creation of aB molecule,
the second term represents the creation of a pair ofA mol-
ecules, the third term signifies the annihilation of a pair ofA
molecules, and the last term signifies the annihilation of aB

molecule. The functionssRW u rW ,rW8d or s8srW ,rW8 uRW d denotes the
reaction rate in each direction of Eq.(8.1). In physics, the
Hamiltonian(8.2) describes a system of interacting bosons of
two species. The equilibrium state of the fluorescence-
diffusion-reaction process will be analogous to the ground
state which carries a Bose condensate. The proportion of
each species in the condensate is determined by the mass-
action law and the fluctuations are calculable with well de-
veloped field theoretic method. In terms of the generating
functional (4.12) and the functional derivative(4.4), we are
able to calculate various correlation functions of the photon
counting histogram in the presence of chemical reactions us-
ing techniques developed in quantum field theory. This ap-
proach is expected to be more systematic than the conven-
tional reaction kinetics.
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APPENDIX A

1. The derivation of the formulas for distribution function
of the time-delay histogram

To derive theDt distribution (the distribution function of
the time interval between two successive photon emissions),
we start with the case with finite time bins(e is sufficiently
small that the probability of more than one photons within a
bin can be ignored) and look for the probability of one pho-
ton event innth bin, one photon event insn+ ldth bin with
Dt=sl −1de, and no photon in the bins between them. Up to a
normalization constant, the probability is

rnl = const o
m1,. . .,mn−1,mn+l+1,. . .,mN

Pm1¯mn−110̄ 01mn+l+1¯mN

=
]

] zn

]

] zn+l
Gs1, . . . ,1,zn,0, . . . ,0,zn+l,1, . . . ,1d. sA1d

By summing overn with a fixedl, we find the probability of
successivel −1 empty bins

rl = o
n

rnl. sA2d

Taking the limit of infinitesimal bins, i.e.,e→0 at fixedT
andDt, we obtain the desired distribution function(4.7).

2. Detector effect

Consider the case of a single time bin, i.e.,N=1, we have

Gszd = o
m=0

`

Pmzm sA3d

and

Geffszd = o
m=0

`

Pm
effzm. sA4d

Under the assumption that each photon counting by the de-
tector is statistically independent of others, the probability of
detectingm photons out ofn incident photons is

n!

m ! sn − md!
hms1 − hdn−m, sA5d

with h the detector efficiency. Therefore

Pm
eff = o

n=m

`

Pn
n!

m ! sn − md!
hms1 − hdn−m. sA6d

Substituting Eq.(A6) into Eq. (A4), we obtain that
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Geffszd = o
m=0

`

o
n=m

`

Pn
n!

m ! sn − md!
hms1 − hdn−mzm

= o
n=0

`

Pno
m=0

n
n!

m ! sn − md!
shzdms1 − hdn−m

= o
n=0

`

Pns1 − h + hzdn

= Gs1 − h + hzd. sA7d

Following the same steps for each variable in the case with
N.1, we end up with Eqs.(4.10) and (4.11).

APPENDIX B

The probability generating functional of the photon emis-
sion histogram fromN identical fluorescence molecules is
modeled according to the following two principles.

The generating functional withN nonreacting molecules,

Gfzstdg = gNfzstdg, sB1d

with gfzstdg the generating functional of one molecule.
The generating functional of one molecule,

gfzstdg = o
C

PCgCfzstdg, sB2d

wheregCfzstdg denote the generating functional along a par-
ticular diffusion pathC andPC the probability of the path.

Dividing the integrating timeT into N time bins witht0
=0, . . . ,tn=ne , . . . ,tN=Ne=T and specifying a diffusion
path C by the location of the molecule at each instant,
st0, . . . ,tn, . . . ,Td, i.e.,

C = hrW0, . . . ,rWn, . . . ,rWNj. sB3d

For sufficiently smalle, the probability of more than one
photon in each bin may be ignored and we have

gCfzstdg = lim
e→0

p
n=0

N−1

f1 − elusrWnd + elznusrWndg

= lim
e→0

expFle o
n=0

N−1

szn − 1dusrWndG . sB4d

The probability of the pathC is entirely determined by dif-
fusion. Since the probability for a molecule to diffuse from
rWn at tn to rWn+1 at tn+1 is

S 1

4pDe
D3/2

d3rWn+1e
−srWn+1 − rWnd2/4De, sB5d

PC = p
n=0

N−1 S 1

4pDe
D3/2

d3rWn+1e
−srWn+1 − rWnd2/4De. sB6d

It follows from Eqs.(B2), (B4), and(B6) that

gfzstdg =
1

V
lim
N→`

S 1

4Dpe
D3N/2E p

n=0

N
d3rWnexpf− eo

n

Lng,

sB7d

with

Ln =
1

4D
S rWn+1 − rWn

e
D2

+ s1 − zndlusrWnd, sB8d

where we have taken the average of the initial location of the
molecule,rW0, over the volume of the solution. Mathemati-
cally, Eqs.(B7) and (B8) present a path integral of a quan-
tum mechanical particle moving in an external potentialf1
−zstdglusrWd in an imaginary time. A similar path integral has
been used to describe fluorescence correlations[19]. Follow-
ing the standard procedure[20], we may cast Eq.(B7) into
the canonical form

gfzstdg =
1

VKUT expF−E
0

T

dthstdGUL , sB9d

whereT is the time ordering operator,

hstd = − D¹2 + f1 − zstdglusrWd sB10d

is the analog of the quantum mechanical Hamiltonian opera-
tor and u0d is the analog of a quantum mechanical state,
whose wave function iskrWul=1.

Finally, we would like to explain the operatorT in more
detail, when acting on a product of operator functions of
time, it arranges the order of these operators according to the
descending order of their time arguments, i.e.,

TOst1dOst2d ¯ Ostnd = OstP1
dOstP2

d ¯ OstPn
d, sB11d

with P1,P2, . . . ,Pn a permutation of1,2, . . . ,n, such that
tP1

ù tP2
ù ¯ ù tPn

. This property, when applied to the Taylor
expansion of the exponential operator in Eq.(B9), yields

T expf−E
0

T

dthstdg

= 1 −E
0

T

dthstd +E
0

T

dt2E
0

t2
dt1hst2dhst1d

+ ¯ + s− dnE
0

T

dtnE
0

tn
dtn−1¯ E

0

t2
dt1hstnd

3hstn−1d ¯ hst1d + ¯ . sB12d

APPENDIX C

For a time independent operatorA and a time dependent
operatorBstd, the following identity holds with the time or-
dering product:

T expF−E
0

t

dtfA + BstdgG = e−tAFT expH−E
0

T

dtBstdJG ,

sC1d

with Bstd=etABstde−tA.
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The expansion of the functional(4.21) that generates all
correlation coefficients for a nonreacting system follows
from the identity(C1) with A=−D¹2 andB=f1−zstdglusrWd.
We find

Ffzstdg = CfE
0

T

dtf1 − zstdgkuuul −E
0

T

dt2f1 − zst2dg

3E
0

t

2dt1f1 − zst1dgkuuest2−t1dD¹2
uul + ¯g,

sC2d

I = C1std = clkuuul, sC3d

and

C2st,t8d = cl2kuueut−t8uD¹2
uul. sC4d

This expansion is parallel to the perturbative expansion of
the quantum mechanical analog.

The expansion in the diffusion constant for a nonreacting
system is obtained by applying the identity(C1) with A=
−lu, B=−D¹2, andt=Dt, and making a Taylor expansion of
the second factor on the right-hand side of Eq.(C1):

nFstuzd = CFku1 − e−zltuul

−E
0

t

dskue−zlst−sduD¹2e−szltuul + ¯G . sC5d

This expansion corresponds to the strong coupling expansion
of the quantum mechanical analog.

The calculation of the expectation valueku¯ ul in Eqs.
(C2) and (C5) is facilitated by switching between the coor-
dinate and momentum representations of the quantum me-
chanical analog. The stateul is the state of zero momentum
and is normalized the volume of the system.

[1] D. Magde, E. L. Elson, and W. W. Webb, Phys. Rev. Lett.29,
704 (1972).

[2] G. Bonnet, O. Krichevsky, and A. Libchaber, Proc. Natl. Acad.
Sci. U.S.A. 95, 8602(1998).

[3] E. L. Elson and D. Magde, Biopolymers13, 1 (1974).
[4] C. R. Cantor and P. R. Schimmel, Biophysical Chemistry:

Techniques for the Study of Structure and Function, 1980, Vol.
II (unpublished).

[5] Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, Biophys. J.
77, 553 (1999).

[6] P. Kask, K. Palo, D. Ulmann, and K. Gall, Proc. Natl. Acad.
Sci. U.S.A. 96, 13 756(1999).

[7] E. Novikov and N. Boens, J. Chem. Phys.114, 1745(2001).
[8] P. Schwille, F. J. Meyer-Almes, and R. Rigler, Biophys. J.72,

1878 (1997).
[9] K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, Biophys. J.

79, 2858(2000).
[10] R. Rigler, U. Mets, J. Widengren, and P. Kask, Eur. Biophys. J.

22, 69 (1993).
[11] P. Kask, K. Palo, N. Fay, L. Brand, Ü. Mets, D. Ullmann, J.

Jungmann, J. Pschorr, and K. Gall, Biophys. J.78, 1703
(2000).

[12] L. Mandel, Opt. Lett.4, 205 (1979).
[13] A. G. Palmer and N. L. Thompson, Biophys. J.52, 257

(1987).
[14] H. Qian and E. L. Elson, Proc. Natl. Acad. Sci. U.S.A.87,

5479 (1990).
[15] H. Qian and E. L. Elson, Biophys. J.57, 374 (1990).
[16] L. Mandel, Proc. Phys. Soc.72, 1037(1958).
[17] D. L. Snyder,Random Point Processes(Wiley-Interscience,

New York, 1975).
[18] L. Mandel and E. Wolf,Optical Coherence and Quantum Op-

tics (Cambridge University Press, Cambridge, 1995).
[19] J. Enderlein, Phys. Lett.6, 427 (1996).
[20] R. P. Feynman and A. Q. Hibbs,Quantum Mechanics and Path

Integrals (McGraw-Hill, New York, 1965).

REN et al. PHYSICAL REVIEW E 69, 051916(2004)

051916-12


